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Structural Metamaterials Group
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• Co-led by Matthew Santer and Rob Hewson in the Department of 
Aeronautics at Imperial College London

• https://www.imperial.ac.uk/structural-metamaterials/

• Design optimization that works in the real world. Generate 

manufacturable, multiscale structures for a range of objectives 

such as, stiffness, weight, controlled displacement, failure, 

uncertainty, frequency and vibration modes, thermostructural

response, [insert pde here]…

• Take a look at our poster and models

https://www.imperial.ac.uk/structural-metamaterials/


Dynamic Launch Loads
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© SpaceX Falcon Heavy launch

Launch is usually the most challenging environment a 
spacecraft must endure

Ariane 1 first flight data



Launch Qualification
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• Launcher specific sinusoidal, random and shock 
dynamic loading

• Industry standard qualification process
• Linear finite element analysis in the 

frequency domain
• Experimental validation on a shaker

• If the launcher changes so does the launch 
environment

• Often necessitates a costly and time-consuming 
redesign

• Use of structural metamaterials avoids this 
need
• We can tailor resonant response without 

changing bulk structural properties

© ESA BepiColumbo vibe test

My shaker!



Microscale Material Properties
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Populate Database

Response Surface



Macroscale Optimization
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Problem Definition Optimization loop Optimization Output Lattice Reconstruction

𝐽 = 𝑢𝑇𝑲𝑢

F u, x = 0

𝑉 ≤ 𝑉𝑑

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:

Response surfaces define material 
properties



Frequency Tailoring
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𝑲− 𝜆𝑖 𝑴 𝝓𝒊 = 𝟎

𝜔𝑖 =
λi

2𝜋

𝝓𝑖
𝑇𝑴𝝓𝒊 = 1

𝜔𝑙𝑏 ≤ 𝜔𝑛 ≤ 𝜔𝑢𝑏 or   𝑀𝑎𝑥: 𝜔𝑛

𝑀𝐴𝐶𝑖 ≥ 0.9

𝑴𝑨𝑪 =
𝝋𝑻𝝓

2

𝝋𝑻𝝋 (𝝓𝑻𝝓)

Resonance eigenvalue equation

Mass normalised mode shapes

Eigenvalue to resonant frequency

MAC constraint

𝝋 is the desired mode shape
𝝓 is the current mode shape

Frequency 
Optimization

Mode Shape 
Optimization

Frequency constraint or objective
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Metamaterial Results
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1. Uniform Lattice

2. (Static) Compliance Optimized – No frequency 
constraints

3. Compliance Optimized – Increase 1st bending mode  
𝜔1 ≥ 800

4. Compliance Optimized – Swap the order of 
frequencies  𝜔2 ≤ 650

Specimen Compliance Volume Fraction, 𝑽𝑫 𝝎𝟏 𝝎𝟐

1 17.74 0.4 345 426

2 5.10 0.4 757 792

3 5.29 0.4 800 878

4 5.17 0.4 708 650

First Bending Mode

Second Bending Mode



Experimental Verification
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• Heat Treatment

• 720°C

• 2 hours

• Ultrasound Bath

• Brüel & Kjær 440 mm shaker

• LDS hydrostatic-bearing slip 
table

• 0.5 g Sinusoidal sweep 10-
1000 Hz

• EOS M290 Machine
• Titanium Alloy Ti64



Validation Example
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Case 1
Case 4

Same mass; same static compliance



Conclusion
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• Metamaterials enable frequency 
tailoring
• Avoid undesired resonance
• Enforce band gaps
• Define mode shapes 

• Performance has been validated
• Enables rapid optimal redesign of 

components whilst maintaining bulk 
structural properties

• The biggest roadblock is the 
manufacturing and qualification not the 
science

Contact me at:
m.santer@imperial.ac.uk


	Slide 1
	Slide 2: Structural Metamaterials Group
	Slide 3: Dynamic Launch Loads
	Slide 4: Launch Qualification
	Slide 5: Microscale Material Properties
	Slide 6: Macroscale Optimization
	Slide 7: Frequency Tailoring
	Slide 8: Metamaterial Results
	Slide 9: Experimental Verification
	Slide 10: Validation Example
	Slide 11: Conclusion

